
Design of Unstructured Adaptive (UA) NAS Parallel Benchmark

featuring irregular, dynamic memory accesses

Huiyu Feng*, Rob F. Van der Wijngaart t, Rupak Biswast
NASA Ames Research Center

Moffett Field, CA 94035

Abstract

We describe the design of a new method for the measurement of tile performance of

modern computer systems when solving scientific problems featuring irregular, dynamic

memory accesses. The method involves the solution of a stylized heat transfer problem on

an unstructured, adaptive grid. A Spectral Element Method (SEM) with an adaptive, non-

conforming mesh is selected to discretize the transport equation. The relatively high order

of the SEM lowers the fraction of wall clock time spent on inter-processor communication,

which eases the load balancing task and allows us to concentrate on the memory accesses.

The benchmark is designed to be three-dimensional. Paralletization and load balance issues

of a reference implementation will be described in detail in future reports.

1 Introduction

The NAS Parallel Benchmarks (NPB) [1] were originally formulated to measure the perfor-

mance of modern computer architectures--especially parallel machines--when applied to com-

putational problems of importance to the scientific community in general, and to NASA in

particular. Despite the relatively limited scope of the eight problems that made up NPB, the

benchmarks became quite popular and have been widely used by researchers, computer vendors

and buyers, and software tool developers alike. Since their initial release as paper-and-pencil

specifications in 1991, and as source code implementations (in MPI) in 1995 [2], it has become

increasingly clear that the NPB problems lack in the area of irregular and dynamically changing

memory accesses. Such accesses may defeat the hardware and software support for memory

traffic in modern computer architectures. The original NPB featured static applications with

(mostly) fixed-stride memory access, which can be exploited by compilers and specialized hard-

ware to reduce the cost of memory traffic. Not all applications of importance to NASA are

static, however, and it was found by Oliker and Biswas [9] that some strongly dynamic ap-

plications fare poorly when implemented on certain widely used modern parallel computers.

This situation is exacerbated when the programming environment selected offers limited con-

trol over data placement and granularity of data traffic, as is often the case with distributed

shared memory systems.

The current work, to be incorporated in the NPB suite, means to provide a standardized

method for gauging the performance of computer systems when running scientific applications

"Mechanical and Aerospace Engineering Department, George Washington University, Washington, DC, 20052

tComputer Sciences Corporation

*NASA Advanced Supercomputing Division

whose memory access patterns are irregular and unpredictable. Here we present an outline of

the application selected, as well as a motivation for the specific design choices that led to the

problem specification. In a subsequent report we provide a full paper-and-pencil description of
the entire application.

Computing solutions to systems of unsteady partial differential equations (PDEs) on uni-

form meshes within an a priori specified error tolerance can be achieved by employing consistent

discretization schemes and a sufficiently high spatial resolution, assuming numerical stability.

However, for problems with localized sources of error, such as weather forecasting or advanc-

ing front problems, uniform meshes are often not efficient. Computational methods based on

the use of adaptively constructed nonuniform meshes have the potential to reduce the amount

of computation and storage necessary to perform many scientific calculations. Parallel imple-

mentation of such computations based on adaptive meshes may provide further performance

improvement, but raises many additional issues, such as data distribution, load balance, inter-

processor conmmnication, data dependence, and false and true data sharing.

The class of unstructured, adaptive grid problems is identified as a good candidate on which

to base our new benchmark. Several points shall be considered in constructing the specific

benchmark problem:

1. It should be representative of a class of problems relevant to a significant part of the
scientific computing community.

. In order to keep the benchmark size and complexity under control, and to make sure

that little time is spent in modules that constitute parallel overhead that would not be in-

curred by machines like the Cray (formerly Tera) Multithreaded Architecture (MTA), the
problem should be as simple as possible without sacrificing credibility and effectiveness.

. Any load imbalance resulting from grid adaptation nmst be taken care of by data (re)part-

itioning (for distributed-memory systems) and task (re)assignment among processors. It

is not useful to measure performance of a problem with substanital load imbalance, so

we must ensure that the problem can be load balanced for a whole range of numbers of

processors, while the repartitioning and data remapping itself may consume only little
time.

To satisfy the above requirements, we select a stylized heat transfer problem on a cubical

domain with Dirichlet boundary conditions, which makes this benchmark similar in structure

to the existing NPB structured-grid benchmarks BT, SP, and LU. The grid consists of hexa-

hedral elements which will be'nonconforming in the case of nonuniform refinement/coarsening

(see Figure la). A Spectral Element Method (SEM) is selected for the spatial discretization,

and a time-split method composed of fourth-order Runge-Kutta and preconditioned Conjugate

Gradient is used to solved the discrete equations. We use an SEM of a fairly high order, which

increases the amount of work per point in the grid, and reduces the fraction of execution time

spent on inter-processor communication in the case of distributed-memory implementation. In

our reference implementation a tree structure is used to keep track of the grid refinement, which

is used later when coarsening is needed.

2 Problem description

The mathematical model for the heat transfer problem is as follows:

Tt + v. VT : eV2T + S(x,t), (1)

wherethe sourceterm is definedby

1 [CO8(TrlIX -- X0 -- vtil) -nt- 1]
S(x, t) =

0

(2)

Here I[" [[signifies the Euclidian norm. The location vector x is defined by (x, y, z), and xo

is the initial location of the center of the source. The initial temperature distribution on the

domain, consisting of the unit cube [0, iI a, is zero, and the Dirichlet boundary conditions are

fixed at zero as well. The prescribed velocity field v = (u, v, w) is uniform and constant, and

equals the speed of the source. Hence, it is known explicitly when and where mesh refinement

and coarsening are required. While solution-adaptive schemes based on local error estimates

are more common in practical engineering computations, our prescribed feature motion makes

the adaptation more easily controlled and limits the complexity and numerical sensitivity of the

benchmark. High resolutions are applied where large temperature gradients exists, i.e. near the

traveling source. After the source has passed a certain region, high resolutions are no longer

needed there, and grid coarsening is applied. This heat transfer problem is a good candidate for

mesh adaptation, as both refinement and coarsening are clear and obvious. Even though the

elements are rectangular, the circular shape of the source results in a significantly nonuniform

grid.

2.1 Spectral Element Method

The spatial discretization method selected is the Spectral Element Method (SEM) [10], which is

a high order weighted residual technique that combines the geometrical flexibility of the Finite

Element Method and the high accuracy of spectral methods. The SEM provides exponential

spatial convergence for problems with smooth solutions. The reason for using this method is

that the high order of the SEM involves proportionally many arithmetic operations per data

element, which renders the time spent doing communication and load balancing on distributed

memory systems relatively insignificant.

In the SEM, the solution domain is broken up into macroelements. We discretize the

dependent variable as follows,

N N N

T/_(x) = __, E _ Tija_ h_(r)hj(s)hk(t), (3)
i=O j=O k=O

where the h functions are the Lagrangian interpolants based on orthogonal sets of Legendre

polynomials of high degree N, and r,s,t are the local coordinates within each element K

((r, s, t) C [-1,112). Tij_ is the value of the temperature at the collocation point with indices
(i,j,k) within element K. Performing Gauss-Lobatto quadrature on the discrete variational

form of the equation to be solved and summing contributions from adjacent elements, we obtain

a system of ordinary differential equations (ODEs). Details may be found in many references

(e.g. [4, 7, 8, 10]).

A two-step time splitting scheme is used to solve the system of ODEs:

_,n+l = RK4,At(-v" _TTn + S(x, t)) (4)

= eV_T _+t (5)
At

3

m_ _ _ •-_----4-m

Mortar Structure iT T--° _

[vertices v _ , ,

(a) (b) (c)

Figure 1: (a) A typical nonconforming mesh, (b) the structure of its corresponding mortar, (c)

projection operation Q on nonconforming mesh.

The convection and source terms in Eq. (4) are advanced in time by an explicit, fourth-

order Runge-Kutta method (RK4). The stability region of RK4 includes part of the imaginary

axis, which is important, because the anti-symmetric contribution of the convective term to the

right hand side discretization matrix produces imaginary eigenvalues. Stability is guaranteed by

selecting the time step At such that the Courant-Friedrichs-Lewy condition is satisfied. Explicit

time integration of the diffusion term would lead to an overly restrictive time step constraint

(stiffness). Instead, we use the Euler Implicit method for time advancement of the diffusion

term, as shown in Eq. (5). The variational form of this equation is

Tn+l _ _n+l

(,v) = (VT w) (6)

where (.,.) represents the L 2 inner product, and v is the test function.

A fully implicit scheme is applied to solve this equation, employing an iterative Conjugate

Gradient method. A diagonal preconditioner is used to accelerate convergence.

2.2 Mortar Method

A nonconforming mesh--see Figure l(a)--is used to provide geometrical flexibility, which is

essential to grid adaptation. A mortar method is introduced to allow the matches between

nonconforming elements [3, 5]. The configuration of the discretization using a nonconforming

mesh is illustrated in Figure l(b) where each element is surrounded by a mortar structure 3'

with vertices v at each corner. All the neighboring elements with a matching edge (2D) or face

(3D) share the same mortar.

This method is based on the introduction of an auxiliary space (mortar), which is defined at

the boundaries of individual elements. It preserves local structure while decoupling local internal

residual evaluations from transmission of the continuity conditions and imposition of boundary

conditions. It is this clean decoupling which allows for the efficiency of the method when used

in conjunction with fast iterative solvers, especially in the context of parallel computations. It

allows for intensive per element/subdomain calculations, with a minimum of communication

between elements. A mortar element is effectively an interpolation polynomial whose support

consistsof the smallerof the faceson either sideof the interfacebetweengrid elements.The
coefficientsof the polynomialaredefinedsuchthat the jump betweenvaluesof the dependent
variablesacrossthe interfaceis minimalin an integralsense[3].

The mappingof discretizationcoefficientsof neighboringgrid elementsto the mortar inter-
faceelementtakesplacethrougha transformationmatrix Q (see Figure 1(c)), which red.uces

to the identity operator at those grid interfaces where the mesh is conforming. Values of the

dependent variable on the element boundaries are transferred to the mortar by applying QT.

The mortar is updated by summing all the transferred values of the residual from neighboring

elements. The updated mortar value of the residual is then transferred back to the element

edges/faces using Q. However, when mapping tile dependent variable between adaptively up-

dated meshes, to avoid a discontinuity across the nonconfornfing edge/face, the mortar value is

copied from the shortest edge/face of the element on one side of the mortar without summation.

3 Mesh adaptation

The goal of the UA benchmark is to gauge the performance of modern computer architectures

on applications featuring irregular and dynamically changing memory accesses. Time- and

location-dependent adaptation of the topology of unstructured meshes provides both features.

Mesh adaptation includes grid refinement and coarsening. It efficiently provides high resolu-

tion in areas of the domain where large or rapidly varying physical changes exist, while saving

unnecessary computation where the solution is smooth or where error-inducing physical phe-

nomena are absent. An adaptation algorithm based on globally unstructured, locally structured

nonconforming hexahedral meshes is being developed and can be described as follows.

Create a uniform coarse grid. Based on the distance between the element and the center

of the source, perform mesh adaptation to refine the grid. The level of refinement increases in

steps of unit size as the distance between element and source decreases. It is forbidden to have
a difference in refinement level of more than one between adjacent elements. Begin tile time

integration with the refined initial grid. Perform mesh adaptation (refinement and coarsening)

at certain prescribed intervals of physical time, depending on how fast the source travels. This

adaptation is again determined by the distance between each element and the source. After

each mesh adaptation, map the solution to the newly updated mesh, and continue to the next

time step computation. Both mesh refinement and coarsening are isotropic: when an element

needs to be refined, it is always divided evenly in all three coordinate directions, producing

eight child elements. And when coarsening the grid, the reverse procedure is performed: the

eight children are combined into a single parent element. Coarsening is not allowed beyond the

initial coarse grid created at the start of the computation.

As nonconforming elements are allowed in the grid, an element may match either one or

four elements at a particular face. In our serial reference implementation a tree data structure

is used to trace the geometrical relations between elements. Each element has a code which is

combination of 0's and l's. Each parent element has eight child elements whose suffix codes are

000, 001, 010, 011, 100, 101, 110 and 111, see Figure 2a. A complete element code consists of

the parent's code, concatenated with the child code, as indicated in Figure 2b.

One imposed limitation on the grid refinement is that one element can only match four

elements on one face, so when doing the coarsening, this restriction must be taken into consid-

eration to avoid the creation of forbidden meshes. Our procedure for coarsening which produces

the required levels of (de)refinement is as follows. First mark all the elements that are candi-

dates for coarsening. Then check whether all eight child elements of a parent are marked, If

5

:100

i /

O1¸

/:/

000¸¸:::i......

ll0

101

....oo111......

t oot:000

111
: i

/
/

// l

00000110_

(a) (b)

Figure 2: (a) Codes for eight child elements of a parent element (b) Tree structure of element
refinement

so, check whether the coarsening will result in one element matching more than four elements

on any face. If all these conditions are satisfied, then the eight child elements will be combined

into the parent element. Checking whether eight child elements are from the same parent is

quite simple to implement, using the element codes; these may only differ in the last three bits.

To illustrate how the mesh adaption works, Figure 3 shows the mesh (2D) adaptively refined

in the area where large temperature gradients exist, i.e. near the source. The shaded disk

indicates the source, and the solid lines indicate grid element boundaries.

4 Parallelization Issues

While the problem specification allows any type of implementation that conforms to the numer-

ics prescribed, we outline a usefifl strategy for parallel implementation on a distributed-memory

system.

4.1 Load balance

Keeping the order of the SEM fixed throughout the computational domain, the amount of work

per element is constant. Consequently, assigning the same number of elements to each processor

results in a good load balance. A useful restriction is to partition the mesh such that a baseline

element (one belonging to the coarse initial mesh) is never split across multiple processors.

That way the creation of parent elements by coarsening remains straightforward.

Figure 3: Mesh adaptively refined to assign more elements in area where large temperature

gradients exist (2D cut of aD mesh).

4.2 Communications

While partitioning to obtain a good load balance can be achieved efficiently in numerous ways,

it is very hard to create the optimal partitioning that minimizes the amount of data communi-

cation across partition boundaries. In a computation with a low computation to communication

ratio per interface element, it is essential to minimize the number of interface elements. Solving

the minimization problem can be quite costly in terms of CPU time, but this is not what we

want to measure. Consequently, we design our benchmark problem such that optimal parti-

tioning with respect to communication volume is not critical. This is achieved by choosing a

fairly high order of the SEM (as compared to the traditional finite-difference methods used in

the other NAS Parallel Benchmarks), which increases the ratio of computation to comnmnica-

tion for interface elements. This allows us to employ the rather simple partitioning strategy of

Recursive Coordinate Bisection without a severe penalty. The method is adapted to make sure

no split occurs between child elements of the same parent.

References

[1]

[2]

[3]

[4]

Bailey, D.H., Barton J., Lasinski T., and Simon, H. (Eds.) (1991), The NAS Parallel

Benchmarks, NAS Technical Report RNR-91-O02, NASA Ames Research Center, Moffett

Field, CA

Bailey, D.H., Harris, T., Saphir, W.C., Van der Wijngaart R.F., Woo, A.C., Yarrow, M.

(1995), The NAS Parallel Benchmarks 2.0., NAS Technical Report NAS-95-020, NASA

Ames Research Center, Moffett Field, CA

Bernardi, C. Maday, Y. and Patera, A. T. (1994), A new nonconforming approach to

domain decompositions: The mortar element method. Pitman Research Notes in Mathe-

matics, series 1,No. 299:13.

Henderson, R. D. (1999), Adaptive Spectral Elements Methods for Turbulence and Tran-

sition, in High-Order Methods for Computational Physics, T.J. Barth and H. Deconinck

(eds.), Springer, 225-324.

[5] Maday,Y., Mavriplis,C.and Patera,A.T.(1989),Non-ConformingMortar ElementMeth-
ods:Applicationto SpectralDiscretizations,in DomaiT_, Decomposition Methods, pp. 392-

418, SIAM, also ICASE Report 88-59.

[6] Mavriplis, C. (1990), A Posteriori Error Estimators for Adaptive Spectral Element Tech-

niques, Notes on Numerical Methods in Fluid Mechanics, 29:333, Vieweg.

[7] Mavriplis, C. (1994), Adaptive Mesh Strategies for the Spectral Element Method, Com-

puter Methods in Applied Mechanics and Engineering, 116: 77-86.

[8] Mavriplis, C. and Hsu, L.-C. (1997), A Two-Dimensional Adaptive Spectral Element
Method, Proceedings of the 13th AIAA Computational Fluid Dynamics Conference, Snow-

mass.

[9] Oliker, L., Biswas, R. (2000), Parallelization of a Dynamic Unstructured Algorithm Using

Three Leading Programming Paradigms, IEEE Transactions on Parallel and Distributed

Systems, Vol. 11, No. 9, pages 931-940

[10] Patera, A. T. (1984), A Spectral Element Method for Fluid Dynamics: Laminar Flow in

a Channel Expansion, Journal of Computational Physics, 54(4):468-488.

